
Guide

Release 1.1.0

Author: Uwe Finke

The cubaja software and documentation are distributed under the BSD license

http://cubaja.googlecode.com

config

config

Simple example

Imagine a batch application which reads rows from a database and writes them into a
file. The selection is restricted to rows which were inserted within a certain time period.
Database connection parameters, file name and time period have to be configurable. We
place this information in an XML file named 'config.xml':

<?xml version="1.0"?>

<config dateFrom="2010-01-01"
 dateTo="2010-01-31">

 <database driver="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/cubaja"
 user="cubaja"
 password="test"/>

 <output name="/path_to_file/output.txt"/>

</config>

A Java class corresponds to the structures of our XML; all attribute and element names
match to setter methods by name. With an IDE, we only have to write the attribute types
and names; the setter and getter methods are generated.

// imports ...

public class Config {

 private Date dateFrom;
 private Date dateTo;
 private DatabaseConfig database;
 private FileConfig output;

 public Config() {

 }

 public void setDateFrom(Date dateFrom) {

 this.dateFrom = dateFrom;
 }

 public void setDateTo(Date dateTo) {

 this.dateTo = dateTo;
 }

 public void setDatabase(DatabaseConfig database) {

 this.database = database;
 }

 public void setOutput(FileConfig output) {

 this.output = output;
 }

 public DatabaseConfig getDatabase() {

 return database;
 }

 // ... other getter methods ...

}

Release 1.1.0 Page 2

config

At runtime, we put the XML file's directory (which may be a common config directory)
into the classpath. The application uses a Configurator to parse the XML:

import de.ufinke.cubaja.config.Configurator;

// ...

Configurator configurator = new Configurator();
Config config = configurator.configure(new Config());

Protection against mistakes

Sometimes it may happen, e.g. because of a typo, that an XML configuration attribute or
element doesn't match a setter method in the configuration class. Then the Configurator
throws a ConfigException.

The other way round, when there was no attribute or element in the config file which
corresponds to an existing setter method, the Configurator doesn't complain about
something missing. An attribute or element may be optional and a null or another
default value may be used by the application. If a default value is not applicable, we
should protect our application against invalid data by marking the concerning setter
methods with the Mandatory annotation:

import de.ufinke.cubaja.config.Mandatory;

// ...

@Mandatory
public void setDatabase(DatabaseConfig database) {

 this.database = database;
}

Now, if someone forgets to code the database element, the Configurator will throw a
ConfigException.

There is another annotation named 'Pattern' to check XML content. The pattern is a
regular expression, or - with Date parameters - a date pattern for SimpleDateFormat. We
may code an optional hint attribute which is included in an error message.

import de.ufinke.cubaja.config.Pattern;

// ...

@Pattern ("dd.MM.yyyy")
public void setDateFrom(Date dateFrom) {

 this.dateFrom = dateFrom;
}

@Pattern (value="d{10}" hint="10-stellig numerisch")
public void setAccount(long account) {

 this.account = account;
}

The setter method may perform its own checks and throw a ConfigException:

public void setNumber(int number) throws ConfigException {

 if (number > 42) {
 throw new ConfigException("number must be less than 42");
 }
 this.number = number;
}

Release 1.1.0 Page 3

config

Properties

XML may contain properties in the form of '${propertyName}'. Properties are replaced by
values which come from various sources. In a Configurator instance, we may supply
properties and define the search sequence.

By default, properties are searched in the following order:

• System properties.

• Properties defined in an optional file named 'config.properties'. If the
ResourceLoader finds such a file, it is processed.

• Properties defined by elements named 'configProperty' in the XML source. They are
valid from the point of their definition downward in the XML. Another definition
with the same name replaces the original value.

• Environment variables.

<configProperty name="path" value="/home/path/foo"/>

<database driver="com.mysql.jdbc.Driver"
 url="${DB_URL_FROM_ENV}"
 user="${DB_USER_FROM_ENV}"
 password="${DB_PASSWORD_FROM_ENV}"/>

<output name="${path}/output.txt"/>

A special case are properties supplied by a NamedPropertyProvider. They are useful when
the property value depends on program logic. We may define such a provider with the
Configurator or in the XML.

<configPropertyProvider name="timestamp"
 class="de.ufinke.cubaja.config.TimestampProvider"/>

<configProperty name="path" value="/home/path/foo"/>
<configProperty name="date" provider="timestamp">
 <parm pattern="yyyyMMdd"/>
</configProperty>

<output name="${path}/output_${date}.txt"/>

Include another XML resource

The special element 'configInclude' includes another resource which is loaded by the
ResourceLoader. Attention: The root element of the included XML is discarded! Only the
children of the root element are processed.

A resource called 'databases.xml' ...

<config>

 <db_foo url="..."/>
 <db_bar url="..."/>

</config>

... is included in a main configuration resource:

<config>

 <configInclude include="databases.xml"/>

</config>

Release 1.1.0 Page 4

config

Inline include

Include sequences may be defined inline. They are used like an external XML resource.

<config>

 <configInclude define="processMonth"/>
 <process month="${month}"/>
 </configInclude>

 <configProperty name="month" value="1"/>
 <configInclude include="processMonth"/>

 <configProperty name="month" value="2"/>
 <configInclude include="processMonth"/>

</config>

Share objects

Sometimes a config node object needs some special information from the application or
from other config nodes. Every Configurator has a Map which is passed to a config node
object when it implements StartElementHandler.

An application snippet may look like this:

Validator validator = new Validator();
Configurator configurator = new Configurator();
configurator.infoMap().put(VALIDATOR, validator);
Config config = configurator.configure(new Config());

A config node which gets an object from the shared info map:

public class Config implements StartElementHandler {

 private Validator validator;

 public void startElement(Map<Object, Object> sharedMap) {

 validator = (Validator) sharedMap.get(VALIDATOR);
 }

 public void setSomeValue(int value) throws ConfigException {

 if (! validator.isValid(value)) {
 throw new ConfigException("value " + value + " is invalid");
 }
 // ...
 }
}

Release 1.1.0 Page 5

sql

sql

Connect to a database

The parameters which are needed to connect to a database are configurable data.
Therefore the XML configuration should contain an element to define the connection.
The corresponding class is DatabaseConfig. It is recommended to set the log attribute to
true.

A Database object wraps the JDBC Connection. We pass the DatabaseConfig with the
connection properties in the constructor.

Database db = new Database(config.getDatabase());

With a default DatabaseConfig autocommit is set to false. We have to commit or rollback
the current transaction explicitly in our application.

db.commit();

When the Database instance is no longer needed, it should be closed.

db.close();

Write SQL

SQL may be written in a simple String (recommended only for very short statements) or
assembled in an Sql object.

The Sql class offers several append methods to add lines or other SQL fragments. In
contrast to concatenation of simple strings we don't need take care about space
characters or imbedded comments.

Sql sql = new Sql().
 append("select name").
 append(" , birthday").
 append("from customer");

If we want to use the SQL - without quotes and brackets - in other tools, we place the
statement in a file besides our Java source files. The Sql class is able to read this file as
resource. To locate the resource, it has not only to know the file's name, but also the
package where it resides.

When we have a resource named 'select.sql' in the same package as the class which
contains the Sql object, we may code:

Sql sql = new Sql(getClass(), "select");

The purpose of the Sql class is to parse and format a statement. It can't be executed
directly. For execution, we need the appropriate methods of the Database class:

Query query = db.createQuery(sql);

In most cases, we don't need an explicit Sql object, because the Database class offers a
shortcut:

Query query = db.createQuery(getClass(), "select");

Release 1.1.0 Page 6

sql

Variables

The SQL may contain variables in the form of ':variableName'. For JDBC, the variables are
replaced by '?'. Within Query and Update, which are both subclasses of PreparedSql, we
may use position numbers or variable names.

Have a look on the following sections for examples.

Perform a query

The most convenient way to process a ResultSet is to use a cursor which reads all rows
and creates a data object for every row automatically.

We store a select statement in a resource named 'select_customers.sql':

select name
 , birth_date
 , debit
from customers
where debit >= :limit

A data class corresponds to a row. The column names of the select statement have to
match the names of setter methods in the data class. Underlines are replaced by
camelcase names.

public class CustomerData {

 private String name;
 private Date birthDate;
 private double debit;

 // must have a parameterless public constructor

 public CustomerData() {

 }

 public String getName() {

 return name;
 }

 public void setName(String name) {

 this.name = name;
 }

 // ... other getter and setter methods ...
}

The application's code looks like:

// create a prepared statement
Query query = db.createQuery(getClass(), "select_customers");

// set the variables (if there are any variables)
query.setDouble("limit", config.getLimit());

// execute the statement and process the rows of the result set
for (CustomerData customer : query.cursor(CustomerData.class)) {
 process(customer);
}

// close the prepared statement
query.close();

Release 1.1.0 Page 7

sql

Retrieve a single row

There is a shortcut to read the result of a query with a one-row result set.

Integer count = db.select("select count(*) from customers", Integer.class);

Perform insert, update or delete

We have an insert statement in a resource named 'insert_customers.sql':

insert into customers (
 name
, birth_date
, debit
) values (
 :name
, :birth_date
, :debit
)

There is a corresponding data class like in the query example above.

The application code for a mass insert looks like this:

// init: create a prepared statement
Update insert = db.createUpdate(getClass(), "insert_customers");

// for every row: set variables and add data to batch
CustomerData customer = createNextCustomer();
insert.setVariables(customer);
insert.addBatch();

// finish: write to database and cleanup
insert.executeBatch();
insert.close();

db.commit();

An Update may be executed immediately for every single row (not recommended for
high volume data):

Update delete = db.createUpdate("delete from customers where debit > :limit");
delete.setDouble("limit", config.getLimit());
delete.executeUpdate();
delete.close();

db.commit();

Execute other SQL

Other SQL statements than select, insert, update or delete may be executed with a
Database instance:

db.execute("revoke select from big_brother");

Those statements may not contain variables!

Release 1.1.0 Page 8

csv

csv

CsvReader

Assume there is the following CSV file:

Nachname;Geburtstag
Müller;13.01.1830
Meier;23.12.2002

There are several ways to read a CSV source with a CsvReader. The most flexible is to
use a CsvConfig.

<customer file="/path_to_data/input.csv"
 separator=";"
 header="true"
 datePattern="dd.MM.yyyy">
 <col name="name"/>
 <col name="birth_date"/>
</customer>

There is an adequate data class:

public class Person {

 private String name;
 private Date birthDate;

 // ... parameterless public constructor and setter / getter methods ...

}

The application code looks similar to that of an SQL query:

CsvReader reader = new CsvReader(config.getCsv());
for (Person person : reader.cursor(Person.class)) {
 process(person);
}
reader.close();

If the CSV source was created by men instead by a reliable tool, there may be wrong
data which can't be converted to the type of the data class' setter method. There is a
way to handle erroneous data:

CsvReader reader = new CsvReader(config.getCsv());

CollectingErrorHandler errorHandler = new CollectingErrorHandler();
reader.setErrorHandler(errorHandler);

for (Person person : reader.cursor(Person.class)) {

 if (errorHandler.hasErrors()) {

 // person object exists, but its content is incomplete
 logBadRow(errorHandler);
 errorHandler.reset();

 } else {

 process(person);

 }

}

reader.close();

Release 1.1.0 Page 9

csv

Derive positions from header text

In the example above, column positions are derived from the sequence of the column
definitions within the configuration.

If the source is a manually edited spreadsheet, column position may change in future
because someone inserts a new column. The headerMatch property triggers the
CsvReader to assign column positions in dependence of their header attributes.

The example above may be extended as follows:

<customer file="/path_to_data/input.csv"
 separator=";"
 datePattern="dd.MM.yyyy"
 headerMatch="true">
 <col name="name" header="Nachname"/>
 <col name="birth_date" header="Geburtstag"/>
</customer>

Automatic column definition

If the CSV source has been created by a tool, e.g. a database unload, the header line
often contains the column names.

In such a case, we may use the autoCol property. The CsvReader will create the column
definitions automatically. Because of the conventions for setter methods in conjunction
with automatic data object generation, derived column names have lower case letters.

CSV source:

NAME;BIRTH_DATE
Müller;13.01.1830
Meier;23.12.2002

Configuration:

<customer file="/path_to_data/input.csv"
 separator=";"
 autoCol="true"
 datePattern="dd.MM.yyyy">
</customer>

CsvWriter

As with CsvReader, there are several ways to write CSV output. Here's a general
example:

// init
CsvWriter writer = new CsvWriter(config.getCsv));

// for every row
writer.writeRow(person);

// finish
writer.close();

With CsvWriter, every column must be defined in the CsvConfig; currently there is no
automatic positioning feature. If the header property is true, CsvWriter will produce a
header line.

Release 1.1.0 Page 10

sort

sort

Sorter

The Sorter class is able to sort a high volume of objects. If necessary, objects are
serialized to a temporary file. Therefore, the type of the data objects have to implement
the Serializable interface. Here's an example how to sort data objects:

// create a Comparator
Comparator<CustomerData> comparator = new Comparator<CustomerData>() {

 public int compare(CustomerData a, CustomerData b) {

 return Util.compare(a.getBirthday(), b.getBirthday());
 }
};

// create the Sorter
Sorter<CustomerData> sorter = new Sorter<CustomerData>(comparator);

// for every data object: put it to the sort process
sorter.add(getNextData());

// get the sorted objects
for (CustomerData customer : sorter) {
 process(customer);
}

It is recommended to use the Sorter constructor with a SortConfig parameter to gain
more control over some parameters at runtime.

Matcher

We may use Matcher for the classic master/update-pattern or for other tasks where any
number of sources have to be matched by key. The sources must be sorted before they
are added to a Matcher.

Often, the source data types differ, but contain a common key. Then we need a
KeyFactory to extract the key from the data object.

// setup
Matcher<Long> matcher = new Matcher<Long>(new NaturalComparator<Long>());
MatchSource<Customer> cs = matcher.addSource(customers(), customerKeyFactory());
MatchSource<Account> as = matcher.addSource(accounts(), accountKeyFactory());

// iterate distinct customer numbers
for (Long customerNumber : matcher) {
 if (cs.matches() && as.matches()) {
 Customer customer = cs.get(); // get matching customer object from source
 List<Account> accounts = as.getList(); // get matching accounts from source
 process(customer, account);
 }
}

// key factory for customer source
private KeyFactory<Customer, Long> customerKeyFactory() {
 return new KeyFactory<Customer, Long>() {
 public Long createKey(Customer data) {
 return data.getCustomerNumber();
 }
 };
}

Release 1.1.0 Page 11

sort

// key factory for account source
private KeyFactory<Account, Long> accountKeyFactory() {
 return new KeyFactory<Account, Long>() {
 public Long createKey(Account data) {
 return data.getCustomerNumber();
 }
 };
}

// some provider for sorted customer objects
private Iterable<Customer> getCustomers() {

}

// some provider for sorted account objects
private Iterable<Account> getAccounts() {

}

Release 1.1.0 Page 12

util

util

An application's main class

Typically, the static main method in an application's main class instantiates an object
and calls a worker method. Any Exceptions should be catched and logged. In case of
failure, the exit code should be different from 0. It is useful to have a start and an end
message in the log.

The abstract class Executor handles these tasks. All we have to do is to implement the
execute method and call start:

import de.ufinke.cubaja.util.Executor;

public class Main extends Executor {

 static public void main(String[] args) {

 new Main().start();
 }

 protected void execute() throws Exception {

 // ... do the work ...
 }
}

Don't forget to have Apache CommonsLogging in the classpath and to activate a logging
framework like log4j.

Release 1.1.0 Page 13

	config
	Simple example
	Protection against mistakes
	Properties
	Include another XML resource
	Inline include
	Share objects

	sql
	Connect to a database
	Write SQL
	Variables
	Perform a query
	Retrieve a single row
	Perform insert, update or delete
	Execute other SQL

	csv
	CsvReader
	Derive positions from header text
	Automatic column definition
	CsvWriter

	sort
	Sorter
	Matcher

	util
	An application's main class

